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In this paper we solve the poisedness problem for a bivariate interpolation intro-
duced by B. Bojanov and Y. Xu. The authors were informed the problem was solved
earlier, by a different method, also by B. Bojanov and Y. Xu (to appear, On a
Hermite interpolation by polynomials of two variables, SIAM J. Numer. Anal.).
Parameters of the original interpolation from P2k are the values of a function and its
radial derivatives up to some order k at 2k+1 equidistant nodes of the unit circum-
ference. We also consider other closely related polynomial interpolations and prove
their poisedness. Meanwhile the poisedness of several general univariate Birkhoff
interpolation problems is proved to which the above problem is reduced. At the end
we consider the corresponding useful cubature formulas. © 2002 Elsevier Science (USA)
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1. MAIN RESULTS

Denote by Z0={zn}
2k+1
n=1={(xn, yn)}

2k+1
n=1 , a set of equidistant nodes on

the unit circumference

S1 :={z ¥ R2 : |z|=1}.



The directional derivative of F along t=(a, b) ¥ R2 will be denoted by

DtF :=aFx+bFy.

The radial derivative at z0 ¥ S1 is Dz0F(z0).
The space of univariate polynomials of degree [ m, and the correspond-
ing space of bivariate polynomials of total degree [ m we will denote by
pm and Pm, respectively.
The following theorem gives an affirmative answer to the question
formulated by B. Bojanov and Y. Xu.

Theorem 1. For any set of given numbers {cij} there exists a unique
polynomial p ¥P2k such that

(Dzi )
jP(zi)=cij for any i=1, ..., 2k+1; j=0, ..., k. (1)

This is an even degree polynomial interpolation (see the odd case in the
next theorem).
It should be noted that the poisedness of this interpolation is not simple
at all because of the following consideration. All known poised bivariate
interpolations (perhaps except the one arised from the Pascal theorem for
P2 and 6 points) have a characteristic trait that there are enough many
points on algebraic curves, in particular on straight lines, which enables to
use the Bezout’s theorem for the factorization (see [1]). In this case, both
on a line and on circumference, there are only about the half of number of
points needed:

(i) On circumference we have 2k+1 points while the corresponding
number in Bezout’s theorem is 2×(2k)+1=4k+1 (i.e., the order of the
curve times the degree of the polynomial and plus one).
(ii) On radial lines we have k+1 conditions while the corresponding

number is 2k+1.

The next theorem states the poisedness of another closely related inter-
polation. This is the corresponding odd degree interpolation. Let us
mention that the formulation of this theorem is a result of discussions with
H. Gevorgian.

Theorem 2. For any set of given numbers {cij} there exists a unique
polynomial p ¥P2k−1 such that

(Dzi )
j P(zi)=cij for any i=1, ..., 2k+1; j=0, ..., k−1. (2)
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In the next theorem we show that the above type radial derivative con-
ditions are linearly independent for all polynomial spaces. Namely the
conditions

(Dzi )
j P(zi)=0, i=1, ..., 2k+1; j=0, ..., s, (3)

are independent for Pk+s, where s \ 0. Independence here means (see [2])
that the dimension of the space of polynomials satisfying (3) equals

dimPk+s−(s+1)(2k+1)=(k−s)(k−s−1)/2=: l.

Or, equivalently, one can add l simple nodes to Z0 such that the resulted
set produces a poised interpolation. Here we are able also to specify the
conditions which are to be added. In the case s [ k−2 those conditions are
quite arbitrary, while in the case s \ k+1 they are in the form of radial
derivatives.
We are thus led to the following two strengthenings of the previous
theorems.

Theorem 3. Assume that a set of nodes Z1={z
1
n}
m(m−1)/2
n=1 ¥ R20S1,

which is poised for Pm−2, is given, where 1 [ m [ k. Then for any given sets
of numbers {cij} and {di} there exists a unique polynomial P ¥P2k−m such
that

(Dzi )
j P(zi)=cij for any i=1, ..., 2k+1; j=0, ..., k−m, (4)

and

P(z1i )=di for any i=1, ..., m(m−1)/2. (5)

Theorem 4. Assume that a set of nodes Z2={z
2
n}
m
n=1 ¥ S

10Z0 is given,
such that Z0 2 Z1 does not contain opposite pairs. Then for any given sets of
numbers {cij} and {dij} there exists a unique polynomial P ¥P2k+m(m \ 0)
such that

(Dzi )
j P(zi)=cij for any i=1, ..., 2k+1; j=0, ..., k+m, (6)

and

(Dzi )
j P(z2i )=dij for any i=1, ..., m; j=0, ..., i−1. (7)

Note that one can replace conditions (7) by m(m+1)/2 conditions at
simple nodes, near the S1, by using the continuity property of the poised-
ness of the polynomial interpolation with respect to the nodes. As we men-
tioned above this is a requirement in independence of conditions (6).
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Let us mention the following two special cases of Theorems 3 and 4,
where just one point z0 is added to Z0.

Corollary 5. Let z0 ¨ S1. Then for any given set of numbers {cij} and
c00 there exists a unique polynomial P ¥P2k−2 such that

P(z0)=c00,

and

(Dzi )
j P(zi)=cij for any i=1, ..., 2k+1; j=0, ..., k−2.

Note that in the following second case the restriction on the additional
point in the corollary is slightly less than in the respective Theorem 4.

Corollary 6. Let the node z0 be outside the lines passing through the
origin and one of zi, i=1, ..., 2k+1. Then for any set of given numbers {cij}
and c00 there exists a unique polynomial P ¥P2k+1 such that

P(z0)=c00,

and

(Dzi )
j P(zi)=cij for any i=1, ..., 2k+1; j=0, ..., k+1.

We will see that the crucial step in proving all the previous results is the
following Factorization theorem:

Theorem 7 (On Factorization). Let P be a bivariate polynomial of
degree k [ m [ 2k. Assume that

(Dzi )
j P(zi)=0 for any i=1, ..., 2k+1; j=0, ..., m−k. (8)

Then we have that

P(x, y)=(x2+y2−1)m+1−k Q(x, y),

where Q ¥P2k−m−2. In particular Q=0, if m=2k or m=2k−1, and
Q=c=const., if m=2k−2.

We will use the following standard tool in the polynomial interpolation.

Assertion 8. To prove Theorems 1–4 it is enough to establish only the
uniqueness there when the given number sets are null; i.e., it is enough to
check that if the conditions (1)–(2) and (4)–(7) hold with cij=0, di=0, and

ON A BIVARIATE INTERPOLATION PROBLEM 79



dij=0, respectively, where P is from the respective polynomial space, then
P=0.

In view of this, Theorem 7 implies Theorems 1 and 2, immediately. To
check this for Theorem 3 we apply Theorem 7 for this case and get the
following factorization

P(x, y)=(x2+y2−1)k−m+1 Q(x, y), (9)

where Q ¥Pm−2. We have that P satisfies the conditions (5) of Theorem 3
with di=0, i.e.,

P(z1i )=0 for any i=1, ..., m(m−1)/2,

where z1i ¨ S
1. Hence we get from (9) that

Q(z1i )=0 for any i=1, ..., m(m−1)/2.

Now the poisedness of nodes implies Q=0 and therefore P=0.
The proof of Theorem 4 (and Corollary 6) based on Theorem 7 needs
some preliminaries which will be developed later. We will present the proof
at the end of the following section.

2. THE REDUCTION OF THE FACTORIZATION THEOREM
TO A UNIVARIATE RESULT

We start this section with the formulation of the above mentioned uni-
variate result.

Theorem 9. Let k be a nonnegative integer, d=0 or 1. Let also p be a
univariate polynomial of degree m, k−d+1 [ m [ 2(k−d)+1:

p(x)=C
m

i=0
am−ix i.

Assume that

p(ti)=0 for i=d, ..., k, (10)

where ti=cos(2ip/(2k+1)). Also assume that

a2i−1=0 for i=1, ..., m−k+d. (11)

Then p=0.
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Note that, in view of Assertion 8, this is a statement of the poisedness of
a Birkhoff interpolation (see Theorem 12 and Remark 13). Let us mention
also that the forthcoming Corollary 18 is a strengthening of Theorem 9.
We will prove Theorem 9 in the next section.
To reduce the proof of the Factorization theorem to the above result we
introduce some notations. The homogeneous part of degree i of a polyno-
mial P ¥Ps we denote by Homi P, i=0..., s. For the polynomial P ¥Pn
we consider the operator Dg:Pn QPn−1 given by the following formula:

DgP(x, y)=nP(x, y)−D(x, y)P(x, y).

We have that Dmg:Pn QPn−m, where D
m
gP=D

m−1
g (DgP), and we accept

that DgP ¥Pn−1 if P ¥Pn. Note that the constant n in the definition of Dg
depends on the degree of the polynomial class.
We call the condition (3) the ‘‘zero s’’ condition.
Let us mention the following two properties of the operator Dg.

(i) If P satisfies the ‘‘zero s’’ condition, then DgP satisfies the ‘‘zero
s−1’’ condition and DmgP satisfies the ‘‘zero s−m’’ condition.
(ii) We have

Homi DgP=lHomi P, for P ¥Ps,

where l=s−i ] 0 and i=1, ..., s−1. Thus the corresponding homoge-
neous parts of DgP and P are constant proportional.

We will often use the following Bezout’s theorem:

Assertion 10. Assume that

P(zi)=0 for any i=1, ...2k+1 (zi ¥ S1),

where P is a bivariate polynomial of degree k. Then

P(x, y)=(x2+y2−1) Q(x, y),

where Q ¥Pk−2.

We will use also the following lemma concerning the operator Dg. Let us
note that the univariate analog of this, with the usual differentiation
operator, is a well-known statement on the multiplicity of root.

Lemma 11. Let P=(x2+y2−1) Q1 and DgP=(x2+y2−1) s Q2. Then
P=(x2+y2−1) s+1 Q3, where Q1, Q2, and Q3 are polynomials.
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Proof. We use induction on s \ 0. The case s=0 is obvious. Assume
that the lemma is valid for s−1. We will prove it for s. By using the induc-
tion hypothesis we get

P=(x2+y2−1) s R,

where R is a polynomial. Now we have

(x2+y2−1) s Q2=DgP=(x2+y2−1) s DgR+2s(x2+y2−1) s−1 (x2+y2) R.

Therefore

(x2+y2−1) Q2=(x2+y2−1) DgR+2s(x2+y2) R.

We get from here that

R|S1=0,

where |s1 means the restriction on S1. To complete the proof it remains to
use Assertion 10.
Now we can start

Proof of Factorization theorem 7 Based on Theorem 9. First we rotate
the set of points Z0={zi} and reorder them so that

zi=1cos
2ip
2k+1

, sin
2ip
2k+1
2 , i=0, ..., 2k.

This can be done in view of the respective invariance of the polynomial
space Pm. Now we have that

(x, y) ¥ Z0 implies (x, −y) ¥ Z0. (12)

This implies that it is enough to prove Theorem 7 for polynomials which
are even or odd with respect to the variable y. Indeed, assume that the
theorem is proved for such polynomials and let P ¥Pm satisfy the condi-
tion (8) of Theorem 7. Then, in view of (12), the following polynomials

Q(x, y)=P(x, y)+P(x, −y), R(x, y)=P(x, y)−P(x, −y),

which are even and odd, respectively, in above sense, also satisfy them and
therefore they can be factorized. Now, in view of the equality
P=(Q+R)/2, we get the desired factorization for P.
Let us now prove Theorem 7 by induction on m \ k, in two cases: for
polynomials which are either even or odd in y. Assume that P satisfies the
condition (8); i.e., ‘‘zero m−k’’ condition. Then, in view of property (i) of
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the operator Dg, we have that D
m−k
g P ¥Pk satisfies ‘‘zero 0’’ condition.

Now, by taking into account Assertion 10, we get that

Dm−kg P=(x2+y2−1) Q,

for some polynomial Q ¥Pk−2. This completes the first step of induction.
Now assume that Theorem 7 is true for m−1 we shall prove it for m. Let
P ¥Pm satisfy the assumptions in the theorem. Then DgP belongs to Pm−1
and satisfies ‘‘zero m−k−1’’ condition. Thus by the induction hypothesis
we have that

DgP=(x2+y2−1)m−k Q, (13)

for some polynomial Q ¥P2k−m−1. This implies for i [ m−1 that

Homi DgP(x, y)=C
i

j=0
cj Homj Q(x, y),

where cj=0, −1, 1, or a power of x2+y2. We get from here, in view of
property (ii) of Dg, that

Homi P|S1 ¥P2k−m−1, for i [ m−1. (14)

Case 1. Consider first the case when P is even with respect to y:

P(x, y)=C
m

i=0
HomiP(x, y)=C

m

i=0
Qi(x, y2). (15)

Let us check now, using Theorem 9, that

P|S1=0. (16)

We get from (14)–(15) that

p1(x) :=P(x,`1−x2)=P(x, y)|S1=q1(x)+Qm(x, 1−x2),

where q1 ¥ p2k−m−1 and Qm ¥Pm. Since Qm(x, 1−x2) contains only
monomials xm−2i, it follows that p1 satisfies the conditions of Theorem 9
with d=0. Whence p1=0. Thus (16) is established. Now to complete the
proof, it remains to use Assertion 10 and then Lemma 11.

Case 2. Consider now the case when P is odd with respect to y:

P(x, y)=C
m

i=0
Homi P(x, y)=y C

m−1

i=0
Ri(x, y2). (17)

ON A BIVARIATE INTERPOLATION PROBLEM 83



Let us check now the condition (16). We get from (14) and (17) that

p2(x) :=(1/y) P(x,`1−x2)=q2(x)+Rm−1(x, 1−x2),

where q2 ¥ p2k−m−2 and Rm−1 ¥Pm−1. This means that p2 satisfies the con-
ditions of Theorem 9, with d=1. This completes the proof as in the pre-
vious case.
We end the section, as was promised, by

Proof of Theorem 4 Based on Theorem 7. We will prove Theorem 4 by
induction on m \ 0. The case m=0 coincides with Theorem 1, which is
proved already. Assuming that Theorem 4 is true for m−1 we will prove it
for m. Let P ¥P2k+m satisfy the conditions (6)–(7), where cij=dij=0. In
view of property (i) of Dg, we have that DgP ¥P2k+m−1 satisfies these con-
ditions (6)–(7) with m replaced by m−1. From the induction hypothesis we
obtain

DgP=0.

Therefore, in view of the property (ii) of Dg, we get

Homi P=0, for i [ 2k+m−1.

Thus we have

P(z)=Hom2k+m P(z)=0 for all z ¥ Z0 2 Z2 … S1.

Now since the set {Z0 2 Z2} does not contain opposite pairs and its cardi-
nality is 2k+m+1, we conclude that P=0. The condition on z0 in
Corollary 6, can be verified in the same way.

3. THE PROOF OF THE UNIVARIATE RESULT

In this section we will prove Theorem 9 which, in view of Assertion 8,
implies the following result on the poisedness of a Birkhoff interpolation,
for d=0, 1.

Theorem 12. Let d=0 or 1 and the integers m, k, k−d+1 [ m [

2(k−d)+1, be given. Let also ti=cos(2ip/(2k+1)), i=0, ..., k. Then for
any given sets of numbers {ci} and {di} there exists a unique polynomial
p ¥ pm such that

p(ti)=ci for any i=d, ..., k, and

p (m−2i+1)(0)=di for any i=1, ..., m−k+d.
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Remark 13. (i) Note that for a fixed k=0, 1, 2..., the above theorem
states the poisedness of k+1 and k Birkhoff interpolations connected with
the point sets {ti}

k
i=0 and {ti}

k
i=1 (t0=1), respectively.

(ii) Let us mention that, since so far we did not use the values of
{ti}

k
i=1, all the previous results will remain true also in the following

general symmetric (not necessarily equidistant) case of the point set

Z0={(tn, ± `1−t
2
n)}

k
n=0, where −1 < ti < 1, i=1, 2, ..., k,

provided that the Birkhoff interpolations listed in (i) are poised.
(iii) Moreover, one can hope that the Factorization Theorem 7 is

true (and hence all the previous results are true) for the symmetric point set
described in (ii) if and only if the Birkhoff interpolations listed in (i) are all
poised.

Let us mention that Theorem 9 (or 12) is not true for m \ 2(k−d)+2.
To see this we consider

p(x)=D
k

i=d
(x2−t2i ).

Note also that the cases of degree m=k−d+1, 2(k−d), and 2(k−d)+1
are the easiest ones in Theorem 9 (or 12). Indeed, in the first case we are to
show only that ;k

i=d ti ] 0, while in the other two cases conditions (11)
imply that the polynomial p is either even or odd. In the even case p has
zeros {ti, −ti}

k
i=d and one more: 0 in the odd case. In both cases the

number of zeros is the degree of p plus one. Hence p=0.
We start now

Proof of Theorem 9, which consists of two parts corresponding to
values d=0, 1, and includes a theorem and several lemmas.
Outline of Proof of Theorem 9. The general scheme for proving the
theorem is the translation of the conditions (11) into a linear system where
number of equations is one more than the number of unknowns (which are
the forthcoming ci, i=1, ..., m−k−1+d) and the proving that the resulted
system is inconsistent.

Part 1. In this part we consider the case d=0. Suppose, on the con-
trary, that Theorem 9 (in this case) is not valid; i.e., there exists a nonzero
polynomial p ¥ pm (k+1 [ m [ 2k+1),

p(x)=C
m

i=0
am−ix i,
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with

p(ti)=0 for i=0, ...k, (18)

and

a2i−1=0 for i=1, ..., m−k. (19)

Note that we have m [ 2k+1 which implies that 2(m−k)−1 [ m; i.e., the
indices of a in conditions (19) are within the correct limits.
Without loss of generality we can assume that a0=1. Denote by q0 (the
index 0 here corresponds to the case d=0) the polynomial

q0(x)=D
k

i=0
(x−ti)=: C

k+1

i=0
ak+1−ix i.

According to (18) there is a polynomial

r= C
m−k−1

i=0
ck−ix i,

such that p=q0r, i.e.,

p(x)=C
k+1

i=0
ak+1−ix i C

m−k−1

i=0
cm−k−1−ix i,

where a0=c0=1.
Now conditions (19) are translating into the following linear system,
which was mentioned above, in the outline of the proof,

c1=−a1,

and

C
2i−1

j=1
cja2i−j−1=−a2i−1, for i=2, ..., m−k, (20)

where al=0, if ł ¨ [0, k+1] and cl=0, if ł ¨ [0, m−k−1].
In what follows, in this section, we will prove that this linear system (and
the linear system corresponding to the case d=1, in Part 2) of m−k equa-
tions and with m−k−1 unknowns: c1, ..., cm−k−1 is always inconsistent,
thus proving the theorem. It may seem that it will be difficult to carry out
such a plan since we have a system of general dimension, where the coeffi-
cients depend on k and m, but as we will see the fine set of roots {ti} will
enable us to succeed.
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Step 1. Here we develop a representation of coefficients {ai} of the
polynomial q0.

Theorem 14. Let

q0(x)=P
k
i=0(x−ti)=: C

k+1

i=0
ak+1−ix i,

where ti=cos(2ip/(2k+1)), i=0, ...k. Then we have

a2n=
(−1)n

4n
k+1
n
1k− n
n−1
2 ,

and

a2n+1=
(−1)n+1

2 · 4n
k
n
1k− n−1
n−1
2 , (21)

n=0, ..., [(k+1)/2].

In particular we have

a0=1, a1=−1/2, a2=−(k+1)/4, and a3=k/8.

To prove this theorem we need some lemmas. The following lemma
presents an identity involving the coefficients and roots of a polynomial,
which can be readily checked.

Lemma 15. Let

q(x)=Pki=0(x−ti)=: C
k+1

i=0
ak+1−ix i.

Then we have for 1 [ m [ k+1,

mam=C
m

i=1
(−1) i am−ibi, (22)

where bi=;k
j=0 t

i
j.

Lemma 16. Under the assumptions of Theorem 14 we have

b2n−1=
1
2 ,
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and

b2n=
2k+1
2 ·4n
12n
n
2+1
2
=: g2n+

1
2
,

n=1, ..., k.

Proof. The following equalities

C
k

i=0
cos
2ipm
2k+1

=1/2 for all m=0, ..., 2k, (23)

can be checked readily, in view of the formula

C
k

i=1
cos ij=5cos k+1

2
j sin

kj
2
6;sin j

2
.

We will use also the following expansion

cosqx=C
q

n=0
cn cos(nx). (24)

By taking x=0 here we get

C
q

n=0
cn=1.

Also we have that

c0=
1
p
F
p

0
cosq x dx=˛

0, if q=2n+1,

1/4n 12n
n
2 , if q=2n.

(25)

Now, in view of (23), we get from (24)

bq=C
k

j=0
tqj=(k+1) c0+(1/2) C

q

n=1
cn=(k+1) c0+(1/2)(1−c0).

To finish the proof it remains to use (25).
The following lemma can be checked readily by induction.

Lemma 17. Let Sn :=;n
i=0 ai, for n=0..., k. Then we have

S2n=
(−1)n

4n
1k− n
n
2 ,
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and

S2n+1=
(−1)n

2 · 4n
1k− n−1

n
2 , (26)

for n=0, ..., [(k+1)/2], provided that Theorem 14 is valid.

In particular we have

s0=1, s1=1/2, s2=−(k−1)/4, and s3=−(k−2)/8.

Now we are in a position to present

Proof of Theorem 14. We use induction on n. Assuming the formulas
hold for n−1; we will prove them for n. By making use of Lemma 16 we
can simplify (22) to

mam=−(1/2) Sm−1− C
[m/2]

i=1
am−2ig2i. (27)

Now, on the basis of the induction hypothesis, Lemma 17 is valid. Using it
and considering separately the cases m=2n+1 and m=2n reduces (27) to
the equality

1k− n−1
n−1
2+(−1)n (1/2) 12n

n
2=C

n−1

i=1
(−1)n+i+1

k
2i
1k−i−1
i−1
212(n−i)
n−i
2 .

We need to prove that this is an identity, which can be done readily by
induction on k \ 0. Indeed, in the case k=0 we are to check just that the
left hand side of the above equality is 0. Then assuming the equality is true
for k and subtracting it from the corresponding equality for k+1 we arrive
again to the case of k. This means that the equality is true also for k+1,
and the proof is complete.

Step 2. Now we turn to the linear system (20). We will prove that the
system is inconsistent by showing that:

(i) The subsystem consisting of all equations but the first has a
unique solution.
(ii) This unique solution is not a solution of the first equation.

The same we will do in Part 2. Notice that by this we actually establish the
following result of independent interest.
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Corollary 18. Let d=0 or 1 and k be a nonnegative integer. Then
there exists a unique nonzero polynomial of degree =m, k−d+1 [ m [

2(k−d)+1,

p(x)=C
m

i=0
am−ix i, a0=1,

such that

p(ti)=0 for i=d, ..., k,

and

a2i−1=0 for i=2, ..., m−k+d,

where ti=cos(2ip/(2k+1)).
Moreover we have that a1 ] 0.

We will prove the above mentioned point (i) by showing that the deter-
minant of the following matrix does not vanish

A=R
a2 a1 1 0 0 0 0 0 · · · 0
a4 a3 a2 a1 1 0 0 0 · · · 0
a6 a5 a4 a3 a2 a1 1 0 · · · 0

· · · · · ·
an an−1 an−2 an−3 an−4 an−5 an−6 an−7 · · · am−k

S ,
where n=2m−2k−2 and al=0, if ł ¨ [0, k+1]. Note that here we have

ai, j=a2i−j+1. (28)

By the Cramer Rule, (ii) is equivalent to

det A1+a1 det A ] 0, (29)

where A1 is obtained from A by replacing its first column with the free
terms in the linear system:

−(a3, a5, ..., a2(m−k)−1)T.

Since a1=−1/2, we can rewrite (29) in the form

det A1g ] 0,
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where A1g is obtained from A by replacing its first column with the follow-
ing column:

(2a3+a2, 2a5+a4, ..., 2a2(m−k)−1+a2(m−k)−2)T.

In view of (21), we have for the general term here

2a2n+1+a2n=
(−1)n

4n
k−1
n−1
1k− n−1
n−2
2 . (30)

Thus, it remains to show that

det A ] 0 and det A1g ] 0.

We evaluate each of this determinants by the Gauss Elimination Method.
The results are

det A=±2 (k−m+1)(m−k)/2 1m−1
k
2 , and det A1g=±2 (1−m) m/2,

where ±=(−1) (m−k)/2, if m−k is even, and (+1), otherwise.
These equalities follow from the forthcoming reduced upper triangular
forms B and B1g of the matrices A and A1g in the Gauss elimination.
Namely, in the right hand sides of the above equalities we have the pro-
ducts of diagonal elements of matrices B and B1g, respectively. Here we
have the matrix B,

B=B(k)

=R
b11 −1/2 1 0 0 0 0 0 · · · 0 0
0 b22 b23 −1/2 1 0 0 0 · · · 0 0
0 0 b33 b34 b35 −1/2 1 0 · · · 0 0

· · · · · ·
0 0 0 0 0 0 0 0 · · · 0 bm−k−1, m−k−1

S ,
where

bi, 2j=
(−1) i− j+1

i2 · 4 i− j
51 j−1
i−j−1
2 k+1 j

i− j
2 i6 ,

bi, 2j+1=
(−1) i− j

i4 i− j
51 j
i− j−1
2 k+1 j+1

i−j
2 i6 .

(31)

It is interesting that

B1g=B(0). (32)
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To prove that in fact these are the above mentioned reduced forms we
will use induction on n, which is the number of steps (or rows) in the Gauss
elimination. The case n=0 is obvious since the first rows of the matrices A
and B (or A1g and B1g, respectively) coincide. We assume that after the step
n−1 in the Gauss elimination of A (B) we have a matrix whose first n−1
rows coincide with the corresponding rows of B (B1g). We will show that
after the step n here, the nth row will coincide with the corresponding row
of B (B1g). Let us do this separately for the cases of matrices A and B.

(i) Case of the matrix A. In this case we show that

nth row of A− C
n−1

i=0
ci, n×ith row of B=nth row of B, (33)

where

ci, n=
(−1)n−i i
n4n−i
1k−n
n−i
2 .

The relation (33), for the odd column 2j+1, in view of (21), (28), and (31),
reduces to

k+1
n−j
1k−n+j
n−j−1
2=1
n
C
n

i=1

51 j
i− j−1
2 k+1 j+1

i−j
2 i61k−n

n−i
2 .

This equality can be checked readily by using the following identity of
combinations:

1 r+s
q
2=C

q

i=0

1 r
i
21 s
q−i
2 .

Similarly the case of even columns can be checked.
(ii) Case of the matrix A1g. In this case we show that

nth row of A1g− C
n−1

i=0
di, n×ith row of B1g=nth row of B1g, (34)

where

di, n=
(−1)n−i

4n−i
k−i
k−n
1k−n
n−i
2 .
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The relation (34), for the odd column 2j+1 > 1, in view of (21), (28), (32),
and (31), reduces to

k+1
n−j
1k−n+j
n−j−1
2=C

n

i=1

k−i
k−n
1 j+1
i−j
21k−n
n−i
2 .

This relation can be checked in the same way as the above one. Similarly
can be checked the cases of the first column (in view of (30)) and even
columns.

Part 2. In this part we consider the case d=1 (of Theorem 9). In this
case we have

q1(x)=D
k

i=1
(x−ti)=: C

k

i=0
agk−ix

i.

Hence q0(x)=q1(x)(x−1), which implies that

agn=C
n

i=0
ai=sn.

Thus at once we get that Step 1 of Part 2 is completed already in Lemma
17, where we have a representation for sm.

Step 2. Here the matrices Ā and Ā1g, which correspond to A and A1g
of Part 1, have elements si instead of ai and have dimension m−k instead
of m−k−1 there. Thus we are to prove that

det Ā ] 0 and det Ā1g ] 0,

where Ā1g is obtained from Ā by replacing its first column with the column:

(2s3−s2, 2s5−s4, ..., 2s2(m−k)+1−s2(m−k))T.

In view of (26) we have for the general term here

2s2n+1−s2n=
(−1)n+1

4n
1k− n−1
n−1
2 . (35)

In this part we will just evaluate these determinants since it is hard to find
the reduced forms of the Gauss elimination. First we simplify the determi-
nants, by means of elementary operations.
We start by factoring out the coefficients of the combinations in the
representation of sm in (26) from the considered determinants. This can be
done obviously for the coefficient 1/2, which results with the final factor
1/2n, where n=m−k is the dimension of the determinant in this part.
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Next, for the case of (−1)n, we multiply the column nos. 2, 3, 6, 7, 10, 11
and so on by (−1) after which elements in each row have the same sign. In
this way finally we factor out ±1, namely (−1), if m−n=4i+1 for some
i; and (+1) otherwise. In the case of coefficient 1/4n we multiply column
nos. 2 and 3 by 1/4; nos. 4 and 5 by 1/42; nos. 6 and 7 by 1/43, and so on.
After this we get that such factors are the same in each row. Thus we can
factor out all of them from the first row. This will result to the following
final such factor 4−n(n+2)/4. Summarizing all the above factors we get the
factor ±2−n(n+3)/2. Thus we have

−det Ā=±2 (k−m)(m−k+3)/2 det Â, (36)

where ±=(−1) (m−k+1)/2, if m−k is odd, and (+1), otherwise. Here Â
contains only the combinations in representation (26) of sm, namely it is the
following matrix,

R
Rk−1
1
S 1 1 0 0 0 0 0 · · · 0

Rk−2
2
S Rk−2

1
S Rk−1

1
S 1 1 0 0 0 · · · 0

Rk−3
3
S Rk−3

2
S Rk−2

2
S Rk−2

1
S Rk−1

1
S 1 1 0 · · · 0

· · · · · ·

R r
n
S R r

n−1
S R r−1

n−1
S R r−1

n−2
S R r−2

n−2
S R r−2

n−3
S R r−3

n−3
S R r−3

n−4
S · · · Rf

f
S

S ,
where r=k−n, n=m−k, (fl)=0, if l < 0, and (

f
f) is the combination in the

representation of sm−k+1.
Note that the matrices Ā and Ā1 f differ only in the first column and the
coefficients of the combinations there, in view of (26) and (35), are oppo-
site. Thus, we have the following equality, which corresponds to (36),

det Ā1 f=±2 (k−m)(m−k+3)/2 det Â1 f. (37)

Here Â1g is obtained from Â by replacing its first column with the combi-
nations from (35), i.e.,

51k−2
0
2 , 1k−3

1
2 , 1k−4

2
2 , · · · , 12k−m−1

m−k−1
26T. (38)
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In the second step of simplification we are using the identity

1m
n
2−1m−1

n
2=1m−1

n−1
2 , (39)

and perform the following elementary operations to evaluate det Ā, and
det Ā1g: Choose two neighbour columns where the bottom items in the
corresponding combinations equal (such as 2nd and 3rd, 4th and 5th) and
subtract from the right column the left one. By doing this operation, each
time, first for the rightest possible pair one will arrive to the following
matrix Â, in the case of Ā,

R
1k−1
1
2 1 0 0 0 · · · 0

1k−2
2
2 1k−2

1
2 1 0 0 · · · 0

1k−3
3
2 1k−3

2
2 1k−3

1
2 1 0 · · · 0

· · · · · ·

1k−n
n
2 1k−n

n−1
2 1k−n

n−2
2 1k−n

n−3
2 1k−n

n−4
2 · · · 1k−n

1
2

S ,
where n=m−k.
In the above elementary operations we did not use the first column.
Therefore, the corresponding matrix Â1g, in the case of Ā1g, differs from Â
only with the first column which is (38) and we have that

det Ā=det Â, and det Ā1g=det Â1g. (40)

Now, we evaluate det Â. To do this we subtract from the first column the
ci×ith column, i=2, ..., m−k, succesively, to make the element in the first
column and in the row i−1 to become zero each time.
Let us prove that after doing this with the nth column the first column
equals

(−1)n−1
k−i
i
1k+n−1
n−1
21k−i−1
i− n
2=: d(n, i), i=1, ...m−k.

We use induction on n, i.e., assuming that it is true for n we prove it for the
case of column n+1. Since the top nonzero element in that columns is 1 so
one has

cn+1=d(n, n)=(−1)n−1
k− n
n
1k+n−1
n−1
2 .
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Thus we arrive to the following identity

d(n+1, i)=d(n, i)−cn+1 1
k−i
i− n
2 ,

which can be cheked easely. After the finishing this procedure the only
nonzero element in the first column is the last one, which equals
d(m−k, m−k). It is easely seen then that we have, at the same time,

det Â=(−1)m−k+1 d(m−k, m−k).

Thus we get, in view of (36) and (40), that

det Ā=±2 (k−m)(m−k+3)
m−2k
m
1m
k
2 ,

where ±=(−1) (m−k+1)/2, if m−k is odd, and (−1), otherwise.
Since in the case of d=1 we have, in Theorem 9, that m [ 2k−1 hence
2k−m ] 0 and we get that det Ā ] 0.
At the end we turn to det Â1g, evaluate which will be easier. We subtract
from the first column the (−1) i×ith column, i=2, ..., m−k. In view of
identity (39) after this first column equals

(−1)n+1 1k− n−1
n−n
2 , n=1, ..., n,

with n=m−k; i.e., the last element is the only nonzero one and equals to
(−1)m−k+1. Therefore

det Â1g=1.

Finally, we get, in view of (37) and (40), that

det Ā1g=±2 (k−m)(m−k+3)/2 ] 0.

This completes the proof of Theorem 9.

4. CUBATURE FORMULAS

In this section we consider three cubature formulas associated with
interpolations described in Theorems 1, 2, and Corollary 5.
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Let us start with the interpolation described in Theorem 1. Denote by
Pi0j0 ¥P2k, i0=0, ..., 2k; j0=0, ..., k the fundamental polynomials of this
interpolation, i.e.,

P (j)i0j0 (zi)=d
i, j
i0, j0 ,

where d is the Kronecker symbol. In view of the rotational symmetry of
these fundamental polynomials with fixed j0, we get that the integral

F
x2+y2 [ 1

Pi0j0 (x, y) dx dy=lj0 ; (41)

i.e., it does not depend on i0.
Consider the following formula for the interpolating polynomial Pf of a
function f,

Pf(x, y)=C
2k

i=0
C
k

j=0
f (j)(zi) Pij(x, y).

By integrating this formula, having into account (41), we get, in a standard
way, the cubature formula,

F
x2+y2 [ 1

f(x, y) dx dy q C
k

i=0
ljLj(f), (42)

where

Lj(f)=C
2k

j=0
(Dzi )

j f(zi).

Since this is an interpolatory cubature formula we have that d1 \ 2k, where
d1 is its algebraic degree of precision.
This cubature rule contains very small number of coefficients—the same
number as Gauss quadrature formulas of the same algebraic precision.
Now let us find these coefficients. We have that (42) is precise for P2k.
Hence we get by taking f(x, y)=(x2+y2)n,

2p
2n+2

=(2k+1)[l0+2nl1+· · ·+(2n)klk], n=0, ..., k.

Interestingly, these conditions just mean that the polynomial p1(x) :=
;k
i=0 lix

i is the interpolation polynomial of the function c0/(x+2)
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(c0=2p/(2k+1)) with the knot system 0, 2, ..., 2k. Therefore, by using the
Newton form we get

p1(x)=
2p
2k+1
51
2
+C
k−1

n=0
x(x−2) · · · (x−2n)

(−1)n+1

2n+2(n+2)!
6 .

Or, we have

p1(2x)=
p

2k+1
51+C

k−1

n=0
x(x−1) · · · (x− n)

(−1)n+1

(n+2)!
6 .

This gives a representation for the coefficients lj.
Now, let us consider the interpolation described in Theorem 2. By
repeating each step above, for this case, we arive to the following cubature
formula

F
x2+y2 [ 1

f(x, y) dx dy q C
k−1

i=0
hjLj(f),

with the degree of precision d2 \ 2k−1.
For finding the coefficients this time we have that p2(x) :=;k−1

i=0 hix
i is

the interpolation polynomial of the function c0/(x+2) with the knot
system 0, 2, ..., 2(k−1), and we get as above

p2(2x)=
p

2k+1
51+C

k−2

n=0
x(x−1) · · · (x− n)

(−1)n+1

(n+2)!
6 .

Finally let us consider the interpolation described in Corollary 5, where, for
the rotational symmetry, we take z0=(0, 0). Then in the same way as
above we get the cubature formula

F
x2+y2 [ 1

f(x, y) dx dy q gf(0, 0)+C
k−2

i=0
zjLj(f),

with the degree of precision d3 \ 2k−2.
In this case we get that g=p, while for the other coefficients we have
that p3(x) :=;k−2

i=0 hix
i is the interpolation polynomial of the function

c0/(x+2) with the knot system 2, ..., 2(k−1), and therefore

p3(2x)=
p

2k+1
51/2+C

k−2

n=1
(x−1) · · · (x− n)

(−1)n+1

(n+2)!
6 .
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